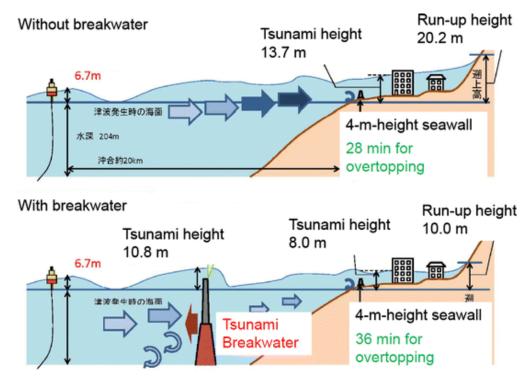


Pookott Alanchery Amith Prasad

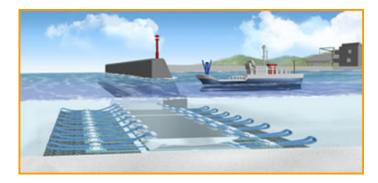
8th EMship cycle: October 2017 – February 2019

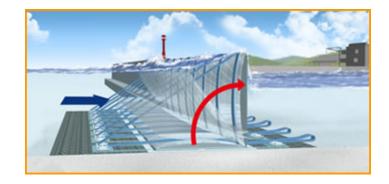
Master Thesis

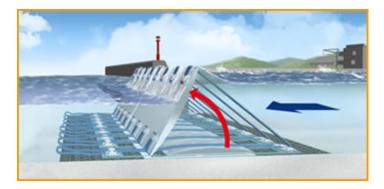
Structural Design of Sea Gate against Tsunami loads considering Ultimate Strength


Supervisor: Prof Maciej Taczala, Professor, West Pomeranian University of Technology, Poland Internship tutors : Prof Kazuhiro Iijima, Associate Professor, Osaka University, Osaka Prof Akira Tatsumi, Assistant Professor, Osaka University, Osaka Reviewer: Prof Rigo Philippe, Professor, University of Liege, Belgium

Hamburg, February 2019

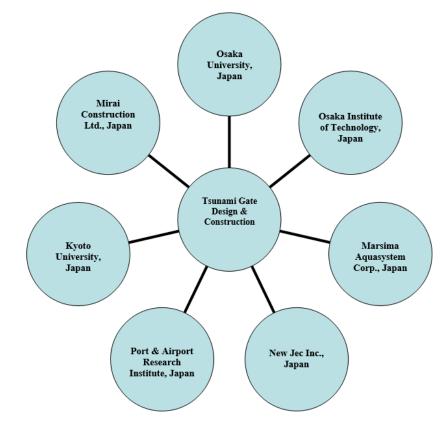

Introduction


- Aftermath of Tohoku Tsunami New ideas/concepts had to be implemented
- Understanding from drawbacks of the previous ideas



The Concept

- Concept of Seagate evolved
- The structure action Tsunami hydrodynamic force



Design Philosophy

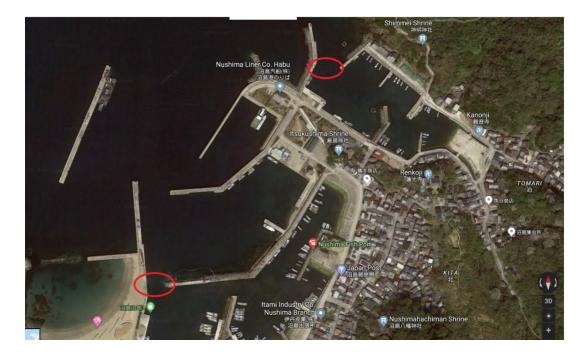
	Determination	Idea
Level-1 Tsunami	Frequent tsunami with return period of the order of <u>100 years</u> .	 Protect human lives, cities and various things. Maintain the <u>whole</u> structure of the breakwater.
Level-2 Tsunami	Maximum possible tsunami and used to design evacuation plan. The return period of the order must be <u>over 1000 years</u> .	 Protect human lives. Minimize the destruction of cities and economy. Maintain <u>partial</u> structure of the breakwater as possible.

Organizations Involved

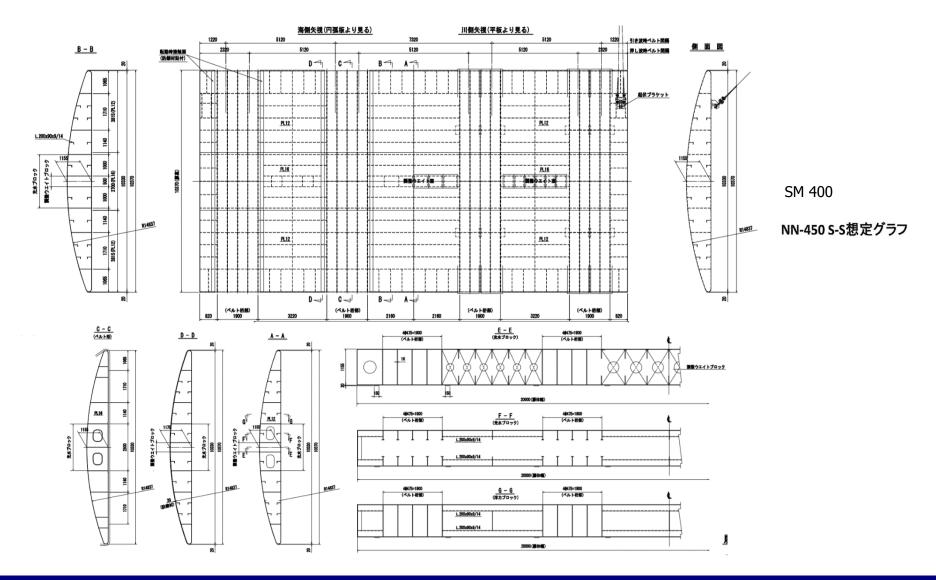
Functionality Test at Kyoto University(Model height-43cm)

- Different scaled models were tested
- All the tested models pass the tests with no damage

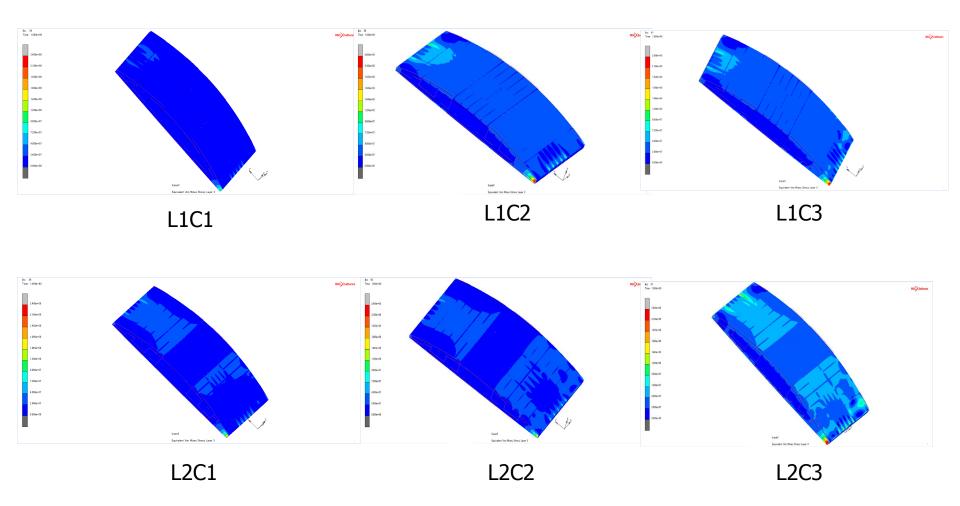
Wave	Max. water level variation(cm)		Max. velocity(cm/s)			Remules exection
Case Height(cm)	Out	In	Out	In	wax. rension(w)	Barrier erection
1.1	1.0	0.9	4.6	4.3	-	No
2.2	2.3	2.3	11.1	9.9	-	No
5.4	6.0	5.7	23.7	23.1	-	No
10.8	11.7	11.0	42.8	41.8	636.0	Yes
16.1	16.4	15.6	58.5	53.0	2261.0	Yes
21.5	21.8	19.4	76.1	63.9	3013.0	Yes
	Height(cm) 1.1 2.2 5.4 10.8 16.1	Height(cm) Out 1.1 1.0 2.2 2.3 5.4 6.0 10.8 11.7 16.1 16.4	Height(cm) Out In 1.1 1.0 0.9 2.2 2.3 2.3 5.4 6.0 5.7 10.8 11.7 11.0 16.1 16.4 15.6	Height(cm) Out In Out 1.1 1.0 0.9 4.6 2.2 2.3 2.3 11.1 5.4 6.0 5.7 23.7 10.8 11.7 11.0 42.8 16.1 16.4 15.6 58.5	Height(cm) Out In Out In 1.1 1.0 0.9 4.6 4.3 2.2 2.3 2.3 11.1 9.9 5.4 6.0 5.7 23.7 23.1 10.8 11.7 11.0 42.8 41.8 16.1 16.4 15.6 58.5 53.0	Height(cm) Out In Out In Max. Tension(N) 1.1 1.0 0.9 4.6 4.3 - 2.2 2.3 2.3 11.1 9.9 - 5.4 6.0 5.7 23.7 23.1 - 10.8 11.7 11.0 42.8 41.8 636.0 16.1 16.4 15.6 58.5 53.0 2261.0

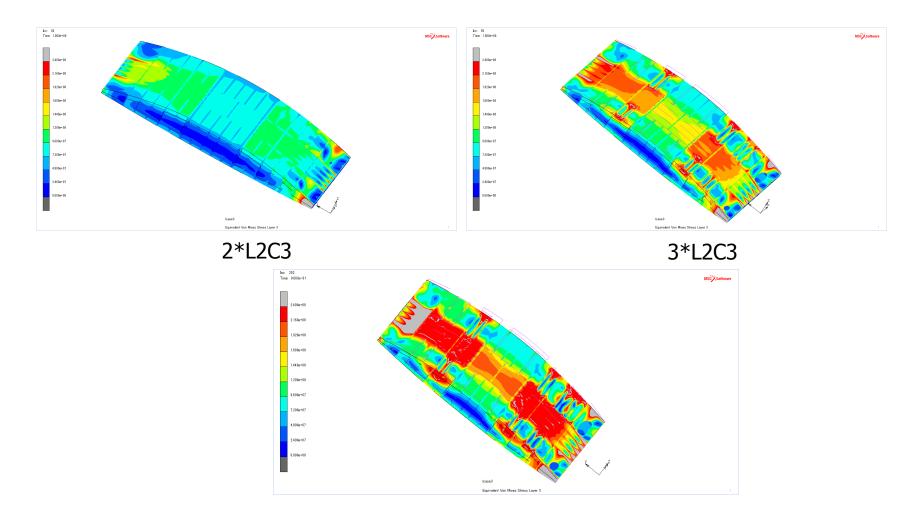

Table 2 Short Tsunami wave characteristics generated and after barrier influence

Casa	Pump	Max. water level variation(cm)		Max. velocity(cm/s)		Max. Tension(N)	Barrier erection
Case	Discharge(m3/s)	Out	In	Out	In	wax. rension(N)	barrier erection
FL005	0.05	0.5	0.4	5	2.5	-	No
FL010	0.1	1.3	1.3	5	2.9	-	No
FL030	0.3	7.9	4.3	16.3	14.5	177.0	Yes
FL050	0.5	14.2	5.2	27.2	21.5	360.0	Yes
FL070	0.7	20.0	7.2	37.7	27.5	683.0	Yes

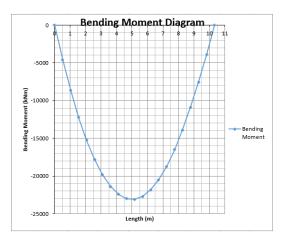

Table 3 Long Tsunami wave characteristics generated and after barrier influence

Areas of Implementation

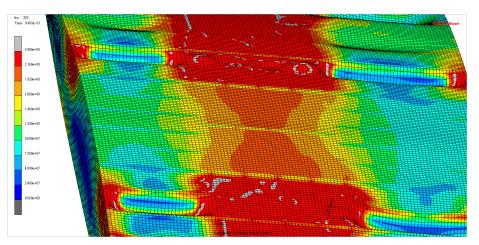

Prefecture	Port	No. Of locations
Uuaga	Nushima Island	2
Hyogo	Fukura Harbour	
Mie Town		
Kochi		


Structure under investigation

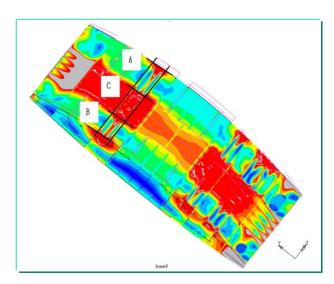
Results



Increment of Loads in proportion to L2C3



Collapse of Structure-90% of 4*L2C3


Why & How?

Moment Distribution

Closer look at the critical area

Collapse sequence

Conclusions

- The structure is safe against the L1/L2 loads
- The Collapse of the structure happens at 90% of 4*L2C3 case

Future work

- Belt could be modeled along with structure for analysis
- To study the collapse area in detail
- To verify and implement the design formula